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Recall: Overall Construction of PRG from OWP

Let f : {0, 1}n → {0, 1}n be a OWP
Given f construct a new OWP that has a hardcore predicate.
Let g : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n be a OWP
defined by g(x , r) = (f (x), r) and h(x , r) = 〈x , r〉 be the
corresponding hardcore predicate
Given a OWP with a hardcore predicate, construct a one-bit
extension PRG. Let G : {0, 1}2n → {0, 1}2n+1 be the one-bit
extension PRG defined by
G (x , r) = (g(x , r), h(x , r)) ≡ (f (x), r , 〈x , r〉)
Given the one-bit extension PRG G , construct an arbitrary
polynomial-stretch PRG. Let H : {0, 1}2n → {0, 1}` be the
arbitrary stretch PRG, where ` > 2n and ` is a polynomial in
n. We define
H(x , r) =

(
〈x , r〉, 〈f (x), r〉,

〈
f 2(x), r

〉
, . . . ,

〈
f `−1(x), r

〉)
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Proofs

We have seen the proofs of all the steps except the following:
h(x , r) is a hardcore predicate of g(x , r).
To show this result, we need to show the following equivalent
result: f is a OWP =⇒ Given (f (x), r) for random x , r , it
only possible to predict 〈x , r〉 with negligible advantage
We consider the contrapositive of this statement
We are given: There exists an efficient adversary A∗ that takes
as input (f (x), r) and correctly guesses 〈x , r〉 with 1/nc

advantage
We need to show: There exists an efficient adversary Ã that
can invert f at 1/nd fraction of inputs
This is Goldreich-Levin Hardcore Predicate Theorem
We will only see a restricted proof of this result
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Restricted Proof: Version 1

So, we are given:

Pr[x ∼ U{0,1}n , r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] >
1
2
+

1
nc

In this restriction we consider:

Pr[x ∼ U{0,1}n , r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] = 1

Consider the following algorithm for Ã(y)
For i ∈ {1, . . . , n}: Let x̃i = A∗(y , ei ), where

ei = (

(i−1)︷ ︸︸ ︷
0, . . . , 0, 1,

(n−i)︷ ︸︸ ︷
0, . . . , 0)

Return (x̃1, . . . , x̃n)

Note that x̃i = xi for all i and hence the algorithm completely
recovers x with probability 1
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Restricted Proof: Version 2

In this restriction we consider: For ε = 1/nc

Pr[x ∼ U{0,1}n , r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] >
3
4
+ ε

Define the following subset

G =

{
x : Pr

r∼U{0,1}n
[A∗(f (x), r) = 〈x , r〉] > 3

4
+
ε

2

}

Intuition: G is the set of all those “good” x where the
adversary successfully finds the hardcore predicate with “good
probability.” We will invert the function f for x ∈ G

Claim
|G | > (ε/2) · 2n
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Proof of the Claim

Overview:
This argument is a general argument referred to as: Averaging
Argument, Pigeon-hole Principle, or Markov Inequality
English Version of this Inequality: If for random (x , r) an
algorithm is “successful” with “overwhelming probability.”
Then the fraction of inputs that are “good values of x” where
the algorithm succeeds with “good enough probability” is
“noticeable”
In our setting “successful” is the even that A∗ correctly
outputs 〈x , r〉, “overwhelming probability” is 3/4+ ε, “good
enough probability” is 3/4+ ε/2, “good values of x” are those
xs where for random r the algorithm finds the bit 〈x , r〉 with
good enough probability, and “noticeable” is ε/2
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Proof of the Claim

Perspective:
Note that

Pr[x ∼ U{0,1}n , r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] >
3
4
+ ε

implies that there exists one x such that:

Pr
r∼U{0,1}n

[A∗(f (x), r) = 〈x , r〉] > 3
4
+ ε

The claim weakens the threshold from 3
4 + ε to 3

4 + ε/2 and
expects to find a lot of xs
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Proof of the Claim

Consider a 2n × 2n matrix where the rows are indexed by x
and the columns are indexed by r . The (x , r)-th entry is 1 or
depending on whether A∗(f (x), r) = 〈x , r〉 or not. The entry
that is 1 will be referred to as “shaded”
The statement

Pr[x ∼ U{0,1}n , r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] >
3
4
+ ε

is equivalent to saying that at least 3/4+ ε fraction of the
entries of the matrix are shaded
We say that “x is below threshold” if the following is true

Pr[r ∼ U{0,1}n : A∗(f (x), r) = 〈x , r〉] <
3
4
+
ε

2

This is same as saying that the row corresponding to x is
shaded at < 3

4 + ε
2 fraction of entries
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Proof of the Claim

Suppose all x are below threshold.
Then every row is shaded < 3

4 + ε
2 fraction of entries

Therefore, the whole matrix is shaded < 3
4 + ε

2 fraction of
entries

Suppose all x are below threshold; except one x

Then (2n − 1) rows are shaded < 3
4 + ε

2 fraction of entries, and
one row is shaded 6 1 fraction of entries
Therefore, the whole matrix is shaded
< 2n−1

2n

( 3
4 + ε

2

)
+ 1

2n · 1 =
( 3

4 + ε
2

)
+ 1

2n ·
( 1

4 −
ε
2

)
fraction of

entries
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Proof of the Claim

Suppose all (except α2n) x are below threshold
Then (2n − α2n) rows are shaded < 3

4 + ε
2 fraction of entries,

and α2n rows are shaded 6 1 fraction of entries
Therefore, the whole matrix is shaded

( 3
4 + ε

2

)
+ α ·

( 1
4 −

ε
2

)
fraction of entries

Note that if α < ε/2 then the matrix is shaded at
<
(3

4 + ε
2

)
+ α ·

(1
4 −

ε
2

)
<
(3

4 + ε
2

)
+ (ε/2) · 1 = 3

4 + ε

This contradicts the fact that the matrix is shaded at > 3
4 + ε

fraction of entries
So, it must be the case that α > (ε/2)
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Using G to Invert

For any x ∈ G , we have the following properties:
Prr∼U{0,1}n [A

∗(f (x), r) = 〈x , r〉] > 3
4 + ε

2

Prr∼U{0,1}n [A
∗(f (x), r + ei ) = 〈x , r + ei 〉] > 3

4 + ε
2 , for all ei

Therefore, by union bound, we have

Pr
r∼U{0,1}n

[A∗(f (x), r) +A∗(f (x), r + ei ) = 〈x , ei 〉] >
1
2
+ ε

Consider the following algorithm B(y , i)
Let m = poly(n/ε)
For r (1), . . . , r (m) ∼ U{0,1}n compute
b(k) = A∗(f (x), r (k)) +A∗(f (x), r (k) + ei )

Output the majority of {b(1), . . . , b(m)}
For a suitable polynomial m, the probability that B(y , i) outputs xi
(when x ∈ G ), is at least (1− 2n) [This part uses Chernoff Bound]
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Using G to Invert

Consider the following algorithm Ã(y)
Output (B(y , 1), . . . ,B(y , n))

For x ∈ G , the probability that Ã(y) outputs x is at least
1− n · 2−n > 1/2 (using union bound) So, Ã inverts all y with
probability 1/2, if x ∈ G . Therefore, Ã successfully inverts y with
probability at least |G |2n ·

1
2 > ε/4
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